
4/17/07 1

6. Application Server

Issues for the Project

CSEP 545 Transaction Processing

for E-Commerce

Philip A. Bernstein

Copyright ©2007 Philip A. Bernstein

4/17/07 2

Requests
• A request is a message that describes a unit of work for the

system to execute.

• An application server coordinates the flow of requests
between message sources (displays, applications, etc.) and
application programs that run requests as transactions.

• Basic control flow:

– Translate the display input (form/menu selection, etc.)
into a standard-format request

– Send the request to the appropriate server based on the
transaction type in the request header

– Start the transaction

– Invoke the transaction type’s application program

– Commit and send the transaction’s output to the display

4/17/07 3

Application Server Architecture
• App server should make the previous control flow scale up

• Bold lines carry request messages

Web Server

Request Controller

Transaction Server Transaction Server

intranet other TP

systems

2

3 4

5

Resource Manager

1

6

Resource Manager

4/17/07 4

Application Server Components
• Web Browser

– A smart device, with forms, menus, input validation

• Web server
– Performs front-end work, e.g., security, data caching, ….
– “Calls” the web page associated with the URL, which in turn

calls a requestcontroller

• Request controller (= Workflow Controller in the project)

– Calls Start, Commit, and Abort

– App logic that transforms the request (automatic loan payment,
money transfer) into calls on basic objects (loan, account).
Sometimes called business rules.

• Transaction server
– Business objects (customer, account, loan, teller)

• Resource Manager – usually a database (DB) system

4/17/07 5

Project’s Process Architecture 1

Web Browser

Web Server

Request Controller

Transaction Server

Resource Manager

Client

Workflow Controller

Resource Manager

4/17/07 6

Request Controller

• For the most part, Request Controllers and

Transaction Servers are just plain old server programs

• The features that differentiate a Request Controller

are that it

– Brackets transactions (issues Start, Commit, and Abort),

so that transaction server procedures can execute either as

independent transactions or as steps in larger transactions

– Reports Commits to the client (e.g., web server)

– Handles Aborts and other failures (e.g., re-runs the transaction)

– Does not access the DB system, so it need not be close to the

DB system (i.e., Resource Manager)

4/17/07 7

Transaction Server

• The features that differentiate a Transaction Server are

the inverse of the Workflow Controller, namely that it

– Does not issue Start, Commit, and Abort (so it can be called

either as an independent transaction or as a step in larger

transaction)

– Does not talk directly to the client (e.g., Web Server)

– Can access the DB system

• In addition, it can call other transaction servers.

• Often, some transaction server code runs as stored

procedures inside the DB system.

– So combining the transaction server and resource manager in

the project isn’t really an oversimplification.

4/17/07 8

Transaction Manager (TM)

• The TM is the server that supports Start, Commit and

Abort.

• It implements two-phase commit (2PC).

• This is a major feature of many application servers.

– 10 years ago, it was the major feature (TM + T-RPC).

– Supports 2PC across different RMs.

– So it’s useful to have a TM in the application server even

though DB products implement 2PC themselves

4/17/07 9

Project’s Process Architecture 2

Web Browser

Web Server

Request controller

Transaction Server

Resource Manager

Client

Workflow Controller

Resource Manager
Transaction

Manager

Start, Commit,

Abort

2PC

4/17/07 10

Remote Procedure Call (RPC)
• Within a system or intranet, RPC is the most popular form

of inter-process communication

• A program calls a remote procedure (in another process) the
same way it would call a local procedure

– This simplifies the message protocol. It’s always a call message
followed by a return message.

– It hides certain communications errors.

– It automates the work of marshaling parameters into and out of
the call and return messages.

• There are many implementations of the concept

– RMI, DCOM, CORBA/IIOP, HTTP, SOAP, ODBC, ….

• In the project, all inter-process communications is via RPC.

4/17/07 11

Transactional RPC
• Transactional RPC is an RPC protocol that implements

the necessary plumbing to cope with a caller and/or callee

that are running a transaction.

• Ideally, Start returns a transaction ID that’s hidden from

the caller in a transaction context

– Transactional RPC passes that transaction context as a hidden

parameter. It’s an easier programming model and avoids errors.

– When a transaction first arrives at a callee C, C needs to enlist

with the local transaction manager (TM), so the TM knows to

call C during two-phase commit.

– Also, C needs to execute the call in the context of the

transaction that called it.

4/17/07 12

Transactional RPC in the Project

• You are implementing transactional RPC in the project.

– In steps 6 and 7

– But the transaction context parameter is explicit (not hidden).

4/17/07 13

Project’s Process Architecture

(revisited)

Web Browser

Web Server

Request controller

Transaction Server

Resource Manager

Client

Workflow Controller

Resource Manager
Transaction

Manager

Start, Commit,

Abort

2PC

enlist

4/17/07 14

Partitioning Servers
• To add system capacity, add server machines.

• Sometimes, you can just relocate some server processes
to different machines.

• But if an individual server process overloads one
machine, then you need to partition the process.

– Example – flights, cars, and hotel rooms are managed by one
server process. Later, you partition them in separate processes.

– This implies the WFC has to direct its RPC calls based on
resource type

– To facilitate such changes, the mapping of resource name to
server name can be made table-driven.

• This scenario is developed in step (7) of the project,
where multiple RMs are required.

4/17/07 15

Parameter-Based Routing

• Sometimes, it’s not enough to partition by resource type,

because a resource is too popular

– Example: flights

• The solution is to partition the popular resource based on

value ranges

– Example – flight number 1-1000 on Server A, flight number

1000-2000 on Server B, etc.

– This implies that a request controller has to direct its calls based

on parameter value (e.g. flight number)

– To facilitate such changes, the mapping of parameter range to

server name can be made table-driven.

• This is a possible project extension (not required)

4/17/07 16

Summary of Concepts

• Request Controller vs. Transaction Server

• Remote Procedure Call (RPC)

• Transactional RPC

• Transaction Manager

• Partitioning Servers

• Parameter-Based Routing

• There’s a lot more to say about Application Servers

and other transactional middleware. We’ll return to

the topic in a later lecture.

